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LONG-TERM GOAL 
 
The overall goal of this work is to refine and validate a spectrum-matching and look-up-table (LUT) 
technique for rapidly inverting remotely sensed hyperspectral reflectances to extract environmental 
information such as water-column optical properties, bathymetry, and bottom classification.   
 
OBJECTIVES 
 
My colleagues and I are developing and evaluating a new technique for the extraction of 
environmental information including water-column inherent optical properties (IOPs) and shallow-
water bathymetry and bottom classification from remotely-sensed hyperspectral ocean-color spectra.  
We address the need for rapid, automated interpretation of hyperspectral imagery.  The research issues 
center on development and evaluation of spectrum-matching algorithms, including the generation of 
confidence metrics for the retrieved information.  
 
APPROACH 
 
The LUT methodology is based on a spectrum-matching and look-up-table approach in which the 
measured remote-sensing reflectance spectrum is compared with a large database of spectra 
corresponding to known water, bottom, and external environmental conditions.  The water and bottom 
conditions of the water body where the spectrum was measured are then taken to be the same as the 
conditions corresponding to the database spectrum that most closely matches the measured spectrum.   
 
In previous LUT work, we have simultaneously retrieved water column IOPs, bottom depth, and 
bottom classification at each pixel from the remote-sensing reflectance RRrs spectra.  This is much to 
ask from a simple RrsR  in  spectrum, but we have shown that all of this information is uniquely contained
hyperspectral reflectance signatures and that the information can be extracted with considerable 
accuracy (Mobley et al., 2005).  
 
Previous work has considered only retrievals based on the closest matching LUT database RR
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rs 

spectrum to a given image spectrum.  However, exactly which database spectrum most closely ma
the image spectrum can be influenced by noise in the image spectrum.  Another way to do the 
retrievals is to find not just the closest-fitting database spectrum, but to find the k closest fitting 
spectra.  Each of these k spectra corresponds to different environmental conditions (bottom depth, 
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bottom type, or water IOPs).  The retrieval can then be taken as the mean value (or some other statis
such as the most frequently occurring value) of the k values.  If these k spectra all correspond to very 
nearly the same environmental conditions, then we can be confident that the retrieval is not strongly
influenced by noise and is, presumably, correct to within a small error.  However, if the k closest 
spectra correspond to widely differing environmental conditions, then we are much less confident of 
the correctness of the retrieval.  A measure of the confidence in a depth retrieval can be based on the 
standard deviation of the distribution of the k retrieved depths, for example.  It should be noted that 
even if the value of an environmental parameter as obtained from the k closest-matching spectra 
analysis value is the same as the value obtained for the closest-matching spectrum, the distribution o
the k values can be used to compute error estimates for the retrieved quantity.  Indeed, the real value of 
this technique often lies in the generation of confidence bounds on retrieved quantities, which in 
application may be as important at the retrieved value itself.  In the literature this approach to 
classification and error estimation is known as 

tic, 
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k Nearest Neighbor (kNN) analysis. 
 
WORK COMPLETED 
 
This year’s work centered on evaluating the kNN method for obtaining quantitative measures of the 
uncertainty of the depth retrievals, i.e., for putting error bars on the retrieved depths at each pixel.  
Examples of depth retrievals and associated error metrics are shown below.  We also evaluated a 
number of different metrics for determining the closeness of two spectra. 
 
In addition to the work discussed here, we performed a detailed analysis of LUT depth and bottom 
classification retrievals in the localized area of Horseshoe Reef, Lee Stocking Island, Bahamas, for 
which bottom classification information was available from underwater transects by divers.  The LUT 
results were in good agreement with ground truth for percent coverages of sediments, corals, and 
mixed bottom types over the reef.  A paper on that work is now in press (Lesser and Mobley, in press). 
 
We also applied the LUT methodology to imagery of optically deep turbid waters in Puget Sound, 
Washington.  That work (not shown here) showed the need for improved methods of atmospheric 
correction of hyperspectral imagery because the retrievals for a given image were sensitive to the 
atmospheric correction scheme used (empirical line fit or TAFKKA).  It was also found that in 
optically deep waters the LUT-retrieved bottom depth was roughly equal to the penetration depth at the 
wavelengths where the water was clearest, rather than a retrieval of infinitely deep water.  (The 
penetration depth at a given wavelength is defined as the inverse of the diffuse attenuation coefficient 
for downwelling plane irradiance and gives an estimate of how far a sensor can “see” into the water 
column at that wavelength.)  The reason that LUT retrieved the penetration depth rather an infinite 
depth in optically deep waters is not yet understood.   
 
During this period we also performed an analysis of several statistical measures of “best” fit of the 
kNN retrieved bathymetry estimates using the 2002 FERI/NAVO/NRL/USACE Joint Looe Key 
HyperSpectral Imaging (HSI) and LIDAR Experiment (Bissett et al, 2005; Figure 7).  This analysis 
included both vector distance and angular separation in an attempt to determine which measure of best 
fit would be appropriate for use in retrieving bathymetry, IOPs, and bottom classification estimates.   
 
RESULTS 
 
The LUT approach to retrieving IOPs, bottom reflectance, and bottom depth information from remote-
sensing reflectances has performed well in its application to various PHILLS images of optically clear 
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and shallow waters (e.g., Mobley, et al., 2005).  This year we re-analyzed imagery from the Lee 
Stocking Island (LSI), Bahamas, area, for which acoustic bathymetry data were available to study the 
utility of kNN analysis in generating error maps corresponding to the retrieved bathymetry maps.  
Figure 1 shows an RGB PHILLS image taken near LSI; Fig. 2 shows the corresponding acoustic 
bathymetry.   
 
When doing a depth retrieval on this image with k = 1, i.e., when using only the closest-matching 
database spectrum (with the Eucledian distance metric; see Table 1) at each image pixel, the LUT 
bathymetry was on average 7.0% or 0.4 m too shallow; 66% of the pixels were within ±1 m of the 
correct (acoustic) depth, and 87% of the pixels were within ±25% of the correct depth.  When the 
retrievals were done with k = 30 and the retrieved depth was taken to be the mean of the 30 values, the 
LUT bathymetry was on average only 1.8% or 0.04 m too shallow.  The other two statistics changed 
very little.  Thus the kNN retrievals were on average deeper, which is correct, but the spread of 
retrieved vs. acoustic depths was essentially unchanged.  This is likely because that spread of values in 
influenced by errors in geolocation of image vs. acoustic points (discussed in Mobley et al., 2005), 
which cannot be rectified by any analysis technique.  Figure 3 shows the retrieved depths for k = 1, and 
Fig. 4 shows the retrievals defined as the mean of 30 values.  The most noticeable difference is that the 
deeper waters at the upper right of the image are somewhat deeper for the k = 30 retrieval. 
 
The k retrieved depths at each image pixel were used to generate two kinds of error maps for the depth 
retrievals.  Figure 5 shows the map of the standard deviation of the 30 retrieved depths.  This map 
gives an estimate of the absolute error in the retrieved depths.  As would be expected, the standard 
deviation of the retrieved depths is greatest for the deepest water.  However, some shallow areas with 
dark bottoms also have large standard deviations.  
 
Figure 6 shows the map of the standard deviation divided by the mean depth, which gives a map of the 
relative errors in the depth retrievals.  Overall for this image, this error metric is in the 0.05 to 0.15 
range, although some areas with dark bottoms have larger relative errors.  In general, areas with bright 
bottoms (ooid sands, in this image) have the smallest relative errors in the depth retrievals. 
 
These error maps are in qualitative agreement with what is expected from signal-to-noise 
considerations, i.e., bathymetry for shallow or bright-bottom areas is retrieved most accurately, and 
deeper areas and areas with darker bottoms have more uncertainty in the retrieved bathymetry.  
However, the combination of LUT spectrum matching and kNN analysis allows us to generate 
quantitative error estimates on the retrieved bathymetry.  Such error maps cannot be generated by 
simpler algorithms that work only with the image spectrum (e.g., band ratio algorithms). 
 
The analysis on Horseshoe Reef was completed using a traditional Euclidean distance calculation (see 
Table 1).  However, there are a number of different statistical measures of “best” fit that could be used 
to complete the kNN retrievals.  Table 1 lists those that we explored using the Looe Key HSI/LIDAR 
data. 
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Table 1.  Metrics for measuring the closeness of two spectra i and j.  Here xik  
means Rrs spectrum i at wavelength k, and the sums are over wavelength.  
 The two spectra that give the minimum value of the metric are the closest. 

 
 

Vector Distance Separation 
 

Equation 

Euclidean:  Sum (over wavelength) of squared point distances 

 

 
 

Manhattan:  Sum of absolute point distances 

 

 
 

Chebyshev:  Closest absolute maximum point distance 
 

 
 

Canberra:  Sum of absolute point distances divided by absolute 
point values 

 

 
 

Bray Curtis:  Sum of absolute point distances divided by sum of 
absolute point values 

 

 
 

 
 

Vector Angle Separation 
 

Equation 

Angular Separation:  Cosine angle between two vectors 

 

 
 

Correlation Coefficient:  Cosine angle between two vectors where 
the coordinates are centered at the mean 

 

 
 

 
 
Figure 8 shows the results over the joint HSI/LIDAR coverage area.  It is evident in this data set that 
vector distance is the best measure for goodness of fit, and that the Manhattan distance calculation is 
the best calculation.  There were some areas that were fit best by angular separation.  These areas were 
primarily best fit by the Correlation Coefficient.  The distance measure takes into consideration the 
magnitude of the RRrs signal, as well as the spectral shape.  Its use is only appropriate where there is 
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high confidence in the calibration of the sensor measured water-leaving radiance and the subsequent 
removal of atmospheric and illumination effects.  Most spectrum matching techniques avoid the use of 
the magnitude because of problems in sensor calibration and atmospheric correction.  We demonstrate 
here the enhanced retrieval resulting from the distance measurements possible with RrsR  data using 
spectra retrieved from a high confidence sensor and processing. 
 
Figure 9 shows the best fit using only Manhattan and Correlation Coefficient measures.  It can be seen 
that there are areas where the Correlation Coefficient achieves better matches than the Manhattan.  
This is primarily seen in shallow water areas where the magnitude of the signal is strong enough to 
allow for the secondary effects of spectral shape to provide a more enhanced fit.  Table 2 summarizes 
these results.  
 

Table 2.  Depth errors for various metrics, averaged over the entire image.   
 RMSE = Root Mean Squared Error (meters), ABSE = Absolute Mean Squared Error (meters). 

 
• Manhattan

– RMSE = 2.25
– ABSE = 1.79

• Correlation Coefficient
– RMSE = 5.97
– ABSE = 4.54

• Combination Man+Cor
– RMSE = 2.31
– ABSE = 1.68

• Best Possible Method
– RMSE=2.07
– ABSE = 1.43  

 
 
IMPACT/APPLICATION 
 
The problem of extracting environmental information from remotely sensed ocean color spectra is 
fundamental to a wide range of Navy needs as well as basic science and ecosystem monitoring and 
management problems.  Extraction of bathymetry and bottom classification is especially valuable for 
planning military operations in denied access areas.  The ability to simultaneously generate error 
estimates on retrieved values is often equally important to the ability to retrieve the environmental 
information itself. 
 
TRANSITIONS 
 
Various databases of water IOPs, bottom reflectances, and the corresponding RRrs spectra, along with 
the specialized Hydrolight code and spectrum-matching algorithms have been transitioned to Dr. Paul 
Bissett at the Florida Environmental Research Institute for processing his extensive collection of 
SAMPSON imagery acquired in coastal California waters, and for use in comparisons of LUT and 
LIDAR bathymetry.  The LUT software was also used in processing imagery acquired by the Naval 
Research Laboratory and Battelle Northwest National Laboratory in Sequim Bay, Washington. 
 
RELATED PROJECTS 
 
This work is being conducted in conjunction with Dr. Paul Bissett of FERI, who is separately funded 
for this collaboration.  I have also received separate funding for the application of the LUT 
methodology to imagery obtained in Puget Sound.    
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Figure 1.  An RGB image of the Horseshoe Reef area made from a PHILLS 
 hyperspectral image taken May 20, 2000.  The bottom includes areas of highly 

 reflecting ooid sands, low reflecting, dense sea grass beds, and low to intermediate reflecting 
 areas of mixed sediments, corals, sea grass, turf algae, and macrophytes. 
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Figure 2.  Acoustic bathymetry coverage for the area corresponding to Fig. 1.  The black dots  
show the locations of the acoustic pings; the solid black area had no acoustic coverage.  

 The acoustic depths are used for validation of the LUT-retrieved depths at the corresponding pixels. 
[The color coding identifies the depth, binned into 2 m bins for convenient viewing.] 

 
 
 
 
 

 
 

Figure 3.  LUT depth retrieval obtained from the closest matching database spectrum (k = 1). 
 [The color coding identifies the depth, binned into 2 m bins for convenient viewing.] 
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Figure 4.  LUT depth retrieval computed as the mean of the k = 30 closest matching database 
spectra.  Note that the retrievals are somewhat deeper than those for k = 1.  [The color coding 

identifies the depth, binned into 2 m bins for convenient viewing.] 
 
 
 
 

 
 

Figure 5.  Standard deviation of the LUT depths for the k = 30 closest  
matching spectra.  The standard deviations of the retrieved depths are  

greatest in deeper waters and in areas with dark bottoms. 
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Figure 6.  Ratio of the standard deviation (Fig. 5) to the mean depth (Fig. 4) for k = 30.  This figure 

shows that the relative depth error is generally in the 0.05 to 0.15 range over most of the image.  
Greater relative errors occur over some areas of darker bottoms. 

 
 
 
 

FERI, NRL, NAVO, 
USACE Fall 2002
FERI, NRL, NAVO, 
USACE Fall 2002

 
 

Figure 7.  Joint HSI/LIDAR Experiment coverage area.   
The red area denotes region of joint data coverage. 
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Figure 8.  Visual results of statistical measure analysis of best fit.  The color coding shows which 
distance metric gave the best agreement between LUT and LIDAR bathymetry.  Overall, vector 

distance was better than vector angular separation in determining best fit.  The Manhattan distance 
calculation was better than Euclidean.  There were some areas where angular separation was better. 
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Figure 9.  The same area as Figure 8, with only the best vector distance (Manhattan)  
and angle separation (Correlation Coefficient).  This image shows that over shallow 

 waters the Correlation Coefficient sometimes retrieved better matches than the Manhattan 
calculation.  This results from the fact that the spectra magnitudes are large enough from the 

 bright shallow water signal to allow for  better certainty from the angular separation. 
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